128 research outputs found

    Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion

    Get PDF
    Tumor volume is a topic of interest for the prognostic assessment, treatment response evaluation, and staging of malignant pleural mesothelioma. Many mesothelioma patients present with, or develop, pleural fluid, which may complicate the segmentation of this disease. Deep convolutional neural networks (CNNs) of the two-dimensional U-Net architecture were trained for segmentation of tumor in the left and right hemithoraces, with the networks initialized through layers pretrained on ImageNet. Networks were trained on a dataset of 5230 axial sections from 154 CT scans of 126 mesothelioma patients. A test set of 94 CT sections from 34 patients, who all presented with both tumor and pleural effusion, in addition to a more general test set of 130 CT sections from 43 patients, were used to evaluate segmentation performance of the deep CNNs. The Dice similarity coefficient (DSC), average Hausdorff distance, and bias in predicted tumor area were calculated through comparisons with radiologist-provided tumor segmentations on the test sets. The present method achieved a median DSC of 0.690 on the tumor and effusion test set and achieved significantly higher performance on both test sets when compared with a previous deep learning-based segmentation method for mesothelioma

    Enhancing the Prediction of Lung Cancer Survival Rates Using 2D Features from 3D Scans

    Get PDF
    Author's accepted manuscript.Available from 18/06/2021.acceptedVersio

    Uncertainty quantification in medical image segmentation with normalizing flows

    Full text link
    Medical image segmentation is inherently an ambiguous task due to factors such as partial volumes and variations in anatomical definitions. While in most cases the segmentation uncertainty is around the border of structures of interest, there can also be considerable inter-rater differences. The class of conditional variational autoencoders (cVAE) offers a principled approach to inferring distributions over plausible segmentations that are conditioned on input images. Segmentation uncertainty estimated from samples of such distributions can be more informative than using pixel level probability scores. In this work, we propose a novel conditional generative model that is based on conditional Normalizing Flow (cFlow). The basic idea is to increase the expressivity of the cVAE by introducing a cFlow transformation step after the encoder. This yields improved approximations of the latent posterior distribution, allowing the model to capture richer segmentation variations. With this we show that the quality and diversity of samples obtained from our conditional generative model is enhanced. Performance of our model, which we call cFlow Net, is evaluated on two medical imaging datasets demonstrating substantial improvements in both qualitative and quantitative measures when compared to a recent cVAE based model.Comment: 12 pages. Accepted to be presented at 11th International Workshop on Machine Learning in Medical Imaging. Source code will be updated at https://github.com/raghavian/cFlo

    Learning Visual Context by Comparison

    Full text link
    Finding diseases from an X-ray image is an important yet highly challenging task. Current methods for solving this task exploit various characteristics of the chest X-ray image, but one of the most important characteristics is still missing: the necessity of comparison between related regions in an image. In this paper, we present Attend-and-Compare Module (ACM) for capturing the difference between an object of interest and its corresponding context. We show that explicit difference modeling can be very helpful in tasks that require direct comparison between locations from afar. This module can be plugged into existing deep learning models. For evaluation, we apply our module to three chest X-ray recognition tasks and COCO object detection & segmentation tasks and observe consistent improvements across tasks. The code is available at https://github.com/mk-minchul/attend-and-compare.Comment: ECCV 2020 spotlight pape

    CASED: Curriculum Adaptive Sampling for Extreme Data Imbalance

    Full text link
    We introduce CASED, a novel curriculum sampling algorithm that facilitates the optimization of deep learning segmentation or detection models on data sets with extreme class imbalance. We evaluate the CASED learning framework on the task of lung nodule detection in chest CT. In contrast to two-stage solutions, wherein nodule candidates are first proposed by a segmentation model and refined by a second detection stage, CASED improves the training of deep nodule segmentation models (e.g. UNet) to the point where state of the art results are achieved using only a trivial detection stage. CASED improves the optimization of deep segmentation models by allowing them to first learn how to distinguish nodules from their immediate surroundings, while continuously adding a greater proportion of difficult-to-classify global context, until uniformly sampling from the empirical data distribution. Using CASED during training yields a minimalist proposal to the lung nodule detection problem that tops the LUNA16 nodule detection benchmark with an average sensitivity score of 88.35%. Furthermore, we find that models trained using CASED are robust to nodule annotation quality by showing that comparable results can be achieved when only a point and radius for each ground truth nodule are provided during training. Finally, the CASED learning framework makes no assumptions with regard to imaging modality or segmentation target and should generalize to other medical imaging problems where class imbalance is a persistent problem.Comment: 20th International Conference on Medical Image Computing and Computer Assisted Intervention 201

    Hierarchical Classification of Pulmonary Lesions: A Large-Scale Radio-Pathomics Study

    Full text link
    Diagnosis of pulmonary lesions from computed tomography (CT) is important but challenging for clinical decision making in lung cancer related diseases. Deep learning has achieved great success in computer aided diagnosis (CADx) area for lung cancer, whereas it suffers from label ambiguity due to the difficulty in the radiological diagnosis. Considering that invasive pathological analysis serves as the clinical golden standard of lung cancer diagnosis, in this study, we solve the label ambiguity issue via a large-scale radio-pathomics dataset containing 5,134 radiological CT images with pathologically confirmed labels, including cancers (e.g., invasive/non-invasive adenocarcinoma, squamous carcinoma) and non-cancer diseases (e.g., tuberculosis, hamartoma). This retrospective dataset, named Pulmonary-RadPath, enables development and validation of accurate deep learning systems to predict invasive pathological labels with a non-invasive procedure, i.e., radiological CT scans. A three-level hierarchical classification system for pulmonary lesions is developed, which covers most diseases in cancer-related diagnosis. We explore several techniques for hierarchical classification on this dataset, and propose a Leaky Dense Hierarchy approach with proven effectiveness in experiments. Our study significantly outperforms prior arts in terms of data scales (6x larger), disease comprehensiveness and hierarchies. The promising results suggest the potentials to facilitate precision medicine.Comment: MICCAI 2020 (Early Accepted

    Deep Learning with Lung Segmentation and Bone Shadow Exclusion Techniques for Chest X-Ray Analysis of Lung Cancer

    Full text link
    The recent progress of computing, machine learning, and especially deep learning, for image recognition brings a meaningful effect for automatic detection of various diseases from chest X-ray images (CXRs). Here efficiency of lung segmentation and bone shadow exclusion techniques is demonstrated for analysis of 2D CXRs by deep learning approach to help radiologists identify suspicious lesions and nodules in lung cancer patients. Training and validation was performed on the original JSRT dataset (dataset #01), BSE-JSRT dataset, i.e. the same JSRT dataset, but without clavicle and rib shadows (dataset #02), original JSRT dataset after segmentation (dataset #03), and BSE-JSRT dataset after segmentation (dataset #04). The results demonstrate the high efficiency and usefulness of the considered pre-processing techniques in the simplified configuration even. The pre-processed dataset without bones (dataset #02) demonstrates the much better accuracy and loss results in comparison to the other pre-processed datasets after lung segmentation (datasets #02 and #03).Comment: 10 pages, 7 figures; The First International Conference on Computer Science, Engineering and Education Applications (ICCSEEA2018) (www.uacnconf.org/iccseea2018) (accepted

    Robust Fusion of Probability Maps

    Get PDF
    International audienceThe fusion of probability maps is required when trying to analyse a collection of image labels or probability maps produced by several segmentation algorithms or human raters. The challenge is to weight properly the combination of maps in order to reflect the agreement among raters, the presence of outliers and the spatial uncertainty in the consensus. In this paper, we address several shortcomings of prior work in continuous label fusion. We introduce a novel approach to jointly estimate a reliable consensus map and assess the production of outliers and the confidence in each rater. Our probabilistic model is based on Student's t-distributions allowing local estimates of raters' performances. The introduction of bias and spatial priors leads to proper rater bias estimates and a control over the smoothness of the consensus map. Image intensity information is incorporated by geodesic distance transform for binary masks. Finally, we propose an approach to cluster raters based on variational boosting thus producing possibly several alternative consensus maps. Our approach was successfully tested on the MICCAI 2016 MS lesions dataset, on MR prostate delineations and on deep learning based segmentation predictions of lung nodules from the LIDC dataset
    corecore